Friday, 15 January 2016

UVa 10313 - Pay the Price


Here dp[i][j][k] means --: 
 "i" -- The last coin used
 "j" -- Total sum obtained
 "k" -- "No. of coins taken"

It can be calculated as:

dp[i][j][k]=dp[i-1][j][k]+dp[i][j-i][k-1].

where 1st condition is (when "i"th coin is not taken) and "2"nd condition is (when "i"th coin is taken so subtracting its value from sum-"j" and decreasing "k" as one coin is used.).It can be calculated by both Bottom-up Approach and Top-down Method just need a little optimisation to pass under the given constraints..

*Take care of corner cases like n=0 because there is 1 way to get 0 using 0 coins so::

Input :

0
0 0
0 1
0 0 0
0 0 1
0 1 1
0 1 2
200 30 75 

Output:

1
1
1
1
1
0
0
2347163627458

Top-Down Method :


//\\__ hr1212 __//\\

#include <bits/stdc++.h>

using namespace std;

typedef long long ll;
typedef vector<int> vi;
typedef pair<int,int> pii;
typedef map<int,int> mi;

#define si(a) scanf("%d",&a)
#define sii(a,b) scanf("%d %d",&a,&b)
#define siii(a,b,c) scanf("%d %d %d",&a,&b,&c)
#define pi(a) printf("%lld\n",a)
#define nl printf("\n");
#define pb push_back
#define mp make_pair
#define all(c) (c).begin(),(c).end()
#define f(i,a,b) for(i=a;i<b;i++)
#define rf(i,a,b) for(i=a;i>=b;i--)
#define clr(x,a) memset(x,a,sizeof(x))
#define MAX 1000100
#define MOD 1000000007

ll n,m,dp[400][400][400];
char s[400];

ll solve(ll i,ll j,ll k){
    if(j==0 && k==0)
        return 1;
    if( i<1 || j<1 || k<=0)
        return 0;
    if(dp[i][j][k]!=-1)
        return dp[i][j][k];
    return dp[i][j][k]=solve(i-1,j,k)+solve(i,j-i,k-1);
}

int main(){
    ll r,k,i,c=0,st,x=0,y=0,j,t,l,z,x1=0,y1=0,l1,l2;
    ll ans=0;string p,q[5];

// dp is cleared only once so previous values are automatically taken from dp and only new values are computed again otherwise would result in TLE.


    clr(dp,-1);
    while(gets(s)){
        z=sscanf(s,"%lld %lld %lld",&n,&l1,&l2);
        ans=0;
        if(z==1){
            f(i,1,min(n+1,301LL))
                ans+=solve(n,n,i);
            if(n==0)
                ans=1;
        }
        else if(z==2){
            f(k,1,min(l1+1,301LL))
                ans+=solve(n,n,k);
            if(n==0)
                ans=1;
        }
        else{
            f(k,l1,min(l2+1,301LL))
                ans+=solve(n,n,k);
            if(n==0 && l1==0)
                ans=1;
        }
        pi(ans);

    }

    return 0;
}


Bottom-Up Approach :


//\\__ hr1212 __//\\

#include <bits/stdc++.h>

using namespace std;

typedef long long ll;
typedef vector<int> vi;
typedef pair<int,int> pii;
typedef map<int,int> mi;

#define si(a) scanf("%d",&a)
#define sii(a,b) scanf("%d %d",&a,&b)
#define siii(a,b,c) scanf("%d %d %d",&a,&b,&c)
#define pi(a) printf("%lld\n",a)
#define nl printf("\n");
#define pb push_back
#define mp make_pair
#define all(c) (c).begin(),(c).end()
#define f(i,a,b) for(i=a;i<b;i++)
#define rf(i,a,b) for(i=a;i>=b;i--)
#define clr(x,a) memset(x,a,sizeof(x))
#define MAX 1000100
#define MOD 1000000007

ll n,m,dp[400][400][400];
char s[300];

int main(){
    ll r,k,i,c=0,st,x=0,y=0,j,t,l,z,x1=0,y1=0,l1,l2;
    ll ans=0;string p,q[5];

    for(k=0;k<=300;k++){
        for(j=0;j<=300;j++){
            for(i=0;i<=300;i++){
                if(j==0 && k==0 && i!=0)
                    dp[i][j][k]=1;
                else if(i==0 || j==0 || k==0)
                    dp[i][j][k]=0;
                else{
                    dp[i][j][k]=dp[i-1][j][k];
                    if(j-i>=0 && k-1>=0)
                        dp[i][j][k]+=dp[i][j-i][k-1];
                }
            }
        }
    }

// 1D range sum is used to sum the result where dp[i][i][k] is the total ways to obtain sum "i" using "k" or less coins.

    for(i=1;i<=300;i++)
        for(j=1;j<=300;j++)
            dp[i][i][j]+=dp[i][i][j-1];

    while(gets(s)){
        z=sscanf(s,"%lld %lld %lld",&n,&l1,&l2);
        ans=0;
        if(z==1){
            z=min(n,300LL);
            ans=dp[n][n][z];
            if(n==0)
                ans=1;
        }
        else if(z==2){
            z=min(l1,300LL);
            ans=dp[n][n][z];
            if(n==0 && l1<=1)
                ans=1;
        }
        else{
            z=min(l2,300LL);
            y=max(l1-1,0LL);
            ans=dp[n][n][z]-dp[n][n][y];
            if(n==0 && l1==0)
                ans=1;
        }
        pi(ans);

    }

    return 0;
}

No comments:

Post a Comment